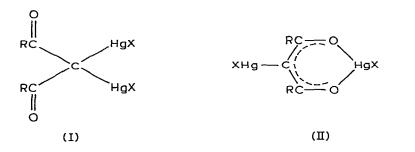
Preliminary communication

ORGANOMERCURY DERIVATIVES OF DIBENZOYLMETHANE


R.J. BERTINO and G.B. DEACON

Chemistry Department, Monash University, Clayton, Victoria 3168 (Australia) (Received January 15th, 1974)

Summary

From reaction of dibenzoylmethane or its monosodium salt with suitable monoorganomercurials or mercuric acetate, the dimercurated complexes XHgC(COPh)₂HgX (X = C_6F_5 , p-HC₆F₄, Ph, or MeCO₂) and the adducts HC(COPh) (COHPh) $\cdot 2C_6F_5$ HgY (Y = Cl or Br) have been prepared. In the complexes, dibenzoylmethane is chelated through oxygen to one mercury atom and is carbon-bonded to the other, whilst in the adducts the enolic form of dibenzoylmethane is possibly weakly coordinated to two mercury atoms..

There have been a number of studies of the reactions of β -diketones with mercuric salts [1-6], but only one study of interactions with organomercury derivatives [7]. Mercuration of dibenzoylmethane with arylmercuric hydroxides was reported to give I (R = Ph; X = Ph or p-Me₂NC₆H₄), the structural proposal being based solely on reactions of the compounds. As part of a detailed study of organomercury complexes of β -diketones, we now report that dimercurated derivatives of dibenzoylmethane, including the known [7] phenylmercuri derivative, have the novel structure II and not I. Adducts of dibenzoylmethane, HC(COPh) (COHPh)·2C₆F₅HgY (Y = Cl or Br), have also been prepared.

The complexes, $XHgC(COPh)_2HgX$ (X = C₆F₅ or p-HC₆F₄)*, were precipitated on reaction of the monosodium salt of dibenzoylmethane with the appropriate polyfluorophenylmercuric chlorides in methanol, and the corresponding acetatomercuri complex (X = MeCO₂) was obtained by mercuration of dibenzoylmethane with mercuric acetate.

Carbon—oxygen stretching frequencies of these complexes and the known PhHgC(COPh)₂HgPh (Table 1) are as expected [8] for chelated dibenzoylmethane, indicative of structure II ($X = C_6F_5$, p-HC₆F₄, Ph, or MeCO₂), and are well below free carbonyl frequencies of substituted dibenzoylmethanes with the diketone structure (Table 1), thereby excluding I. The possibility that the

TABLE 1

CARBON-OXYGEN STRETCHING FREQUENCIES FOR DERIVATIVES OF DIBENZOYLMETHANE

x	Y	ν(CO)
XHEC(COP	$(h)_2 HgX$	
Ċ ₆ F ₅	-	1553s
p-HC ₆ F ₄		1549s (br)
Ph		1545s (br)
MeCO ₂		1568s
XYC(COP	ı),	
Me	ЪН	1684, 1661vs (br
$MeCO_2 Hg^{a}$	Me	1660s, 1635s

 a Prepared by the reaction of the sodium salt of dibenzoylmethylmethane with mercuric acetate in methanol.

complexes have structure I and that the $\nu(CO)$ frequencies are lowered to the values of Table 1 due to intermolecular carbonyl—mercury interactions can be ruled out, since available evidence shows such interactions are weak. For example, crystal structures of bis(dipivaloylmethyl)mercury [1] and dipivaloyl-methylmercuric acetate [3] show only very weak intermolecular carbonyl—mercury bonds, and the compounds have ketonic carbonyl frequencies.

Crystallization from a solution containing equimolar amounts of dibenzoylmethane and pentafluorophenylmercuric chloride or bromide in hexane yields the adducts, $HC(COPh)(COHPh) \cdot 2C_6F_5HgY$ (Y = Cl or Br). X-ray powder photography showed that the solid adducts were not mixtures of the reactants, though complete dissociation occurs in solution. Infrared data are consistent with a structure in which the enolic form of dibenzoylmethane is very weakly coordinated to two mercury atoms.

Acknowledgement

We are grateful to the Australian Research Grants Committee for support.

C62

^{*}All new compounds were obtained analytically pure.

References

- 1 R. Allmann, K. Flatau and H. Musso, Chem. Ber., 105 (1972) 3067.
- 2 F. Bonati and G. Minghetti, J. Organometal. Chem., 22 (1970) 5.
- 3 R.H. Fish, R.E. Lundin and W.F. Haddon, Tetrahedron Letters, (1972) 921; R. Allmann and H. Musso, Chem. Ber., 106 (1973) 3001.
- 4 G.S. Hammond, D.C. Nonhebel and C.S. Wu, Inorg. Chem., 2 (1963) 73; D.C. Nonhebel, J. Chem. Soc., (1963) 738.
- 5 G.B. Marini-Bettoli and L. Paolini, Gazz. Chim. Ital., 75 (1945) 78; L. Paolini, Gazz. Chim. Ital., 89 (1959) 2171.
- 6 G.T. Morgan and H.W. Moss, J. Chem. Soc., 105 (1914) 189; M. Hassanein and I.F. Hewaidy, Z. Anorg. Aligem. Chem., 373 (1970) 80.
- 7 A.N. Nesmeyanov and D.N. Kratsov, Bull. Acad. Sci. USSR, (1962) 398.
- 8 R.D. Hancock and D.A. Thornton, Inorg. Nucl. Chem. Lett., 3 (1967) 423; J. Molec. Struct., 4 (1969) 377.